A case for *more* multiple scattering lidar from space: Analysis of four LITE pulses returned from a marine stratocumulus deck

Anthony B. Davis

Jet Propulsion Laboratory
California Institute of Technology

David M. Winker

NASA – Langley Research Center

... with ideas, papers, discussions, critique, and help from/by many colleagues:

Warren Wiscombe (NASA - GSFC)

Bob Cahalan (NASA - GSFC)

Tamas Várnai (NASA - GSFC)

Matt McGill (NASA - GSFC)

Jim Spinhirne (NASA - GSFC)

Mark Vaughan (NASA - LaRC)

Graeme Stephens (JPL, ex-CSU)

Igor Polonsky (CSU)

Frank Evans (U of Colorado)

Ed Eloranta (U of Wisconsin)

Steve Love (LANL)

Luc Bissonnette (DREV, ret.)

Robin Hogan (U of Reading)

Nicola Pounder (U of Reading)

Outline:

Signal Physics for Multiple-Scattering Cloud Lidar

SNR Estimation

Cloud Property Retrievals

- several techniques
- application to LITE data
- relation to O2 A-band

Summary

With no absorption at common laser wavelengths (e.g., 532 nm), the diffuse radiance field (Green function) permeates the whole cloudy medium.

→ It therefore contains information about the whole cloud.

SHDOM simulation of narrow beam (search light) problem, courtesy of Frank Evans (U. of Colorado)

Exact diffusion theory, for moments

Solid lines: diffusion expressions (closed-form)

Symbols:
Monte Carlo
3D RTE solution

Asymptotic slopes: derived "on a back of an envelop" (see extra slides)

Davis, A.B., R.F. Cahalan, J.D. Spinhirne, M.J. McGill, and S.P. Love, 1999: Off-beam lidar: An emerging technique in cloud remote sensing based on radiative Green-function theory in the diffusion domain, *Phys. Chem. Earth* (*B*), **24**, 177-185 (Erratum 757-765).

Time-dependent diffusion theory for <u>reflected</u> fluxes:

Summary of scaling relations for uniform slabs

H: cloud physical thickness "extinction" [collision probability / m]

 τ : cloud *optical* thickness ($\sigma H = H / \text{Mean-Free-Path}$)

g: asymmetry factor of the scattering phase function (i.e., $\langle \cos \theta_s \rangle = 2\pi \int \cos \theta_s P(\theta_s) \sin \theta_s d\theta_s \approx 0.85$)

From "asymptotic" theory:

(i.e., scaling arguments based on random walk statistics)

prob of reflection: R = 1 - T, where $T \propto 1/(1-g)\tau$

mean path length: $\langle L \rangle_R = \langle ct \rangle_R \propto H$

RMS path length: $\langle L^2 \rangle_R^{1/2} = \langle (ct)^2 \rangle_R^{1/2} \propto H \times \sqrt{(1-g)\tau}$

RMS spot size: $\langle \rho^2 \rangle_R^{1/2} \propto H / \sqrt{(1-g)\tau}$

Application to SNR Estimation

$$R = 1 - T = \frac{(1 - g)\tau}{2\chi + (1 - g)\tau}$$
 (Schuster, 1905)

$$\langle t \rangle_R \approx H / c$$
 \(\rho^2 \rangle_R \approx H \ell_t = H^2 / (1 - g)\tau\) back-of-envelop" estimates

$$S(\delta t, \Delta T) \approx \left[\frac{1}{\pi} \left(\frac{E_{\rm p}}{hv}\right) \times \frac{R \times (1-g)\tau \times c/H^{3}}{R / \langle t \rangle_{R} / \pi \langle \rho^{2} \rangle_{R}}\right] \times \left(\frac{\text{étendue}}{A\delta\Omega} \times \delta t\right) \times \left(\frac{f \times \Delta T}{f \times \Delta T}\right)$$

$$N(\delta t, \Delta T) \approx \sqrt{\frac{S(\delta t, \Delta T)}{\text{shot noise}} + \frac{(1-R) \times (F_{0\lambda} / \pi hv) \times \Delta \lambda \times A\delta\Omega \times \delta t}{\text{solar or lunar background (use } R, \text{ not } T = 1-R, \text{ if from above})}}$$

Transmitter \rightarrow E_p : pulse energy; f: repetition rate

SNR: Space- vs Ground-Based

Davis, A. B., 2008: Multiple-scattering lidar from both sides of the clouds: Addressing internal structure, *J. Geophys. Res.*, **113**, D14S10-14S25, doi:10.1029/2007JD009666.

				<u> </u>
Quantity	Symbol	Unit	LITE	WAIL
Standoff distance	$d_{ m obs}$	km	259	0.7
Equation (56)	$\delta\Omega_{\mathrm{Gf}}$	sr	$4 \ 10^{-6}$	1.8
"Adapted" FOV ^a	$2\theta_{ ext{Gf}}$	deg	0.06	91
	Transmitter P	arameters		
Wavelength	λ	nm	532	532
Power = $E_p \times RepRate$	P	W	5	5
Pulse frequency	RepRate	Hz	10	$12 \ 10^3$
Pulse energy	$E_{\mathbf{p}}$	mJ	500	0.42
Photons per pulse	$E_{\mathbf{p}}^{\mathbf{r}} \lambda hc$	[-]	$1.34 10^{18}$	$1.12 \ 10^{15}$
	Receiver Pa	rameters		
Optical throughput	OTp	%	45 ^b	70
Quantum efficiency	η_{λ}	%	14	70
Aperture area (effective)	A	m^2	0.63	10^{-5}
FOV (full width) ^a	$2\theta_{ ext{max}}$	deg	0.20	88
$\delta\Omega_{\rm FOV}/{\rm U1R_to_F}$	$\frac{2(1-\cos\theta_{\rm max})}{(1-\cos2\theta_{\rm max})/2}$	[-]	$1 + 3 \cdot 10^{-6}$	1.163
Étendue	$A \times U1R_{to}F$	$m^2 \cdot sr$	$6 \ 10^{-6}$	$15.5 \ 10^{-6}$
Filter bandpass	$\Delta \lambda$	nm	0.35	50
	Sampling and	Averaging	ζ	
Path bin size	δct	m	10	10
Integration time	Δt	S	0.1	300
Number of pulses	$N_{f p}$	[-]	1	$3.6 \ 10^{6c}$
	Predicti	ions	t = 0.5 km,	$\tau = 25$
Signal	$S_{\delta ct}(\Delta t)$	counts	2721 ^b	$341\ 10^3$
Only shot noise	SNR _{night}	[-]	78	584
+ lunar background	SNR_{+moon}	[-]	38	19
+ solar background	SNR _{daytime}	[-]	$4.3 \ 10^{-2}$	$2.6 \ 10^{-2}$

Time-dependent diffusion theory for reflected fluxes: Exact diffusion theory, with collimated beam

Davis, A. B., I. N. Polonsky, and A. Marshak, 2009: Space-Time Green Functions for Diffusive Radiation Transport, in Application to Active and Passive Cloud Probing, *Light Scattering Reviews*, *Vol. 4*, A. A. Kohkanovsky (Ed.), Chapter 5, pages 169-292, Springer, Heidelberg (Germany).

Time-dependent diffusion theory for reflected fluxes: Exact diffusion theory, with collimated beam

Davis, A. B., I. N. Polonsky, and A. Marshak, 2009: Space-Time Green Functions for Diffusive Radiation Transport, in Application to Active and Passive Cloud Probing, *Light Scattering Reviews*, *Vol. 4*, A. A. Kohkanovsky (Ed.), Chapter 5, pages 169-292, Springer, Heidelberg (Germany).

Time-dependent diffusion theory for reflected fluxes:

Exact diffusion theory, with collimated beam

Space-based hi-res O₂ A-band (passive modality, same physics)

Davis, A. B., I. N. Polonsky, and A. Marshak, 2009: Space-Time Green Functions for Diffusive Radiation Transport, in Application to Active and Passive Cloud Probing, *Light Scattering Reviews*, *Vol. 4*, A. A. Kohkanovsky (Ed.), Chapter 5, pages 169-292, Springer, Heidelberg (Germany).

Lidar-In-space Technology Experiment (LITE) Space Shuttle Discovery STS-64 mission, September 9-20, 1994

Typical LITE transect: Interesting

LITE transect of interest here!

The four non-saturated LITE returns from nighttime orbit #135

altitude of apparent echo (km above sea level)

Not about "ranging" per se, rather an **impulse response** of an optical medium.

2-parameter retrieval for clouds: From first 2 temporal moments

Davis, A. B., D. M. Winker, and M. A. Vaughan, 2001: First Retrievals of Dense Cloud Properties from Off-Beam/Multiple-Scattering Lidar Data Collected in Space, in *Laser Remote Sensing of the Atmosphere:* Selected Papers from the 20th International Conference on Laser Radar, Vichy (France), July 9-14, 2000, Eds. A. Dabas and J. Pelon, École Polytechnique, Palaiseau (France), pp. 35-38.

2-parameter retrieval for clouds: From new lidar equation in time

Note log-log axes

Nonlinear leastsquares fit over relevant range

 $\tau \approx 20$

 $H \approx 0.25 \text{ km}$

(consistent with uniform $\gamma = 0$ model for two first moments on the previous slide)

Polonsky, I. N., and A. B. Davis, 2005: *Off-Beam Cloud Lidar: A New Diffusion Model and an Analysis of LITE Returns*, LANL Report, LA-14219, Los Alamos National Laboratory, Los Alamos (NM).

2-parameter retrieval for clouds: From time-integral & decay rate

(1) Estimate cloud albedo $R \approx \pi I / E_p$ from I, time-integral of <u>calibrated</u> radiance and compute τ from

$$R(\tau) = \frac{\tau}{\tau + 2\chi/(1-g)}$$

(2) Estimate decay rate L^* for exponential tail and obtain H from

$$L^* = H \times \frac{3(1-g)\tau}{\pi^2 R(\tau)^2}$$

Consistency check with uncalibrated data:

Using retrieval results from previous slide, (1) yields R = 0.69.

Using the same two cloud parameter values, the empirical estimate of $L^* = 0.54$ km in (2) yields R = 0.65 (6% difference).

Platforms for Multiple-Scattering Cloud Lidar In summary, a wide range of stand-off distances:

Ground-based systems

- Wide-Angle Imaging Lidar (WAIL) at LANL
- New receiver using MPL transmitters?

... now eye-safe, and wider FOV

– CW & time-only concepts?

Airborne systems

- Above clouds: THickness from Off-beam Returns (THOR), developed at NASA - Goddard Space Flight Center
- Inside clouds: "In-situ" cloud lidar at U. of Co & SPEC
- Maybe UAVs? Using CW?

Space-based systems

- Lidar-in-space Technology Experiment (LITE), Space Shuttle, September 1994
- Large FOV "channel" on a future lidar mission?
- Complete during daytime with O₂ A-band spectroscopy?

Thank you!

Questions?

Funding from:

© 2011 California Institute of Technology. Government sponsorship acknowledged.